Innovation The Research Concept

Study of Phytodiversity in Sahwa and Taranagar Area of Churu District, Rajasthan

Abstract

Increasing population and changing lifestyle lead extensive commercial exploitation of the natural biodiversity. Therefore, documentation of biodiversity is mandatory to develop the strategies of conservation and management. Present paper reports the phytodiversity in Sahwa and Taranagar area of Churu district. The present study provides information on 188 plant species belonging to 142 genera covering 53 families of angiosperms. Out of these reported 188 plant species 13.3% are trees, 10.1% shrubs, 05.3% under shrubs, 57.5% herbs, 10.6% grasses and 03.2% climbers. It is also evident that Fabaceae and Poaceae are the largest families among Dicotyledons and Monocotyledons respectively. Fabaceae the largest family is represented by 18 genera and 26 plant species whereas Poaceae by 17 genera and 23 species. Rests of the families are represented by less plant species. The present paper has attempted to record the data regarding the availability of plant resources which have various potential uses.

Keywords: Angiosperms, Herbs, Trees, Conservation, Desert. **Introduction**

Norse and Mac Manus (1980) defined the term Biological diversity and its abridged form Biodiversity was initially coined by W.G.Rosen in 1985 (Heywood and Baste 1995) for the first planning meeting of the "National Forum on Biodiversity" held in Washington DC (Singh and Singh, 2010). Biodiversity related to plants known as Phytodiversity. It refers to the number of plants species occurring in the given region, country, continent or the entire globe. It provides the basic necessities of our social, cultural, economic and biological life. Some of the benefits are directly visible to us while some others are indirect. The growing human and animal population has laid great stress on desert vegetation for fuel, top feed, fibers, fertilizer, timber and fencing.

Generally plants live together and form small or large groups in a particular area where they compete with each other for light, water and mineral nutrients. This type of aggregation among plant species is known as community. Vegetation fluctuations from year to year, season to season and month to month are studied through frequency, density and abundance (Mishra, 1968). The study of vegetation is an important aspect in phytosociological studies of an area. Vegetation and plant communities can give us the correct picture of the ecological conditions, since vegetation is a combination of various plant communities of different aspects and compositions, each being the result of combined effect of all environmental factors, connected with where they grow.

Aims of the Study

The present study is an attempt to determine the structure, composition and diversity of plant species in Sahwa and Taranagar area of churu district and also to develop awarness among local inhabitants for Biodiversity conservation.

Review of Literature

It is estimated that these exist 5-50 million species of living forms (Flora and Fauna) on the earth. These include 3, 93,450 of green plants, fungi, bacteria, lichen and viruses (Anon, 1997). India is one of the world's top twelve mega diversity nations (Apte *et al.* 2007) among these India ranked 6th (Semwal *et al.* 2007). India has almost all the climatic conditions and ecological zones found in different part of the word (Krishnakutty and Chandrasekaran, 2007). Indian Thar desert is formed from one of the biogeographical zone of India (Gena 2006). Indian sub-continent is a treasure house of wild economic plants, wild edible and medicinal ones

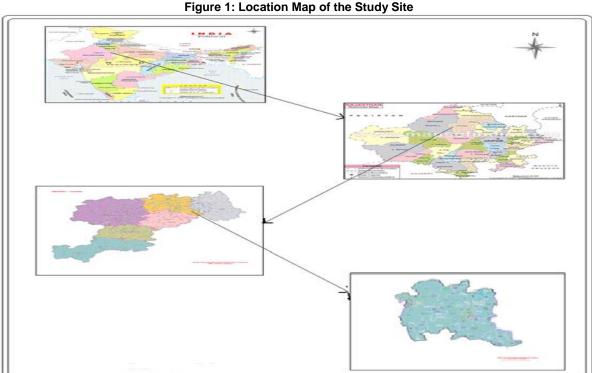
Sweta

Research Scholar, Deptt.of Botany, Dungar College, Bikaner, Rajasthan

ISSN: 2456-5474

Dharmveer Sharma

Assistant Professor, Deptt.of Botany, Dungar College, Bikaner, Rajasthan


Innovation The Research Concept

used in several Ayurvedic preparations and also the centre of domestication and diversification of several forest plant species forage, grasses, shrubs, herbs and ornamental plants. The Indian Thar Desert known as "Maru-Pradesh" means the land of death, the region known for the erosion and depletion of phytodiversity. The characteristic phytodiversity of Thar is due to variable climatic, edaphic and topographic conditions. Those have marked effect on growth and development of vegetation but still several plant species thrive well deposit the inhospitable environmental conditions (Mohammed 2000; Sen 1996, 2000). The collection and study of Rajasthan desert traced from the year 1852 by Mr. and Mrs. G.L.Allen after that Hooker (1907), Sarup (1958), Bhandari (1978,1990), Flora of Churu" (Singh et al 1997), The phytodiversity and ecology of Churu district have been studied by Harsh (2002), Mohammed et al (2002). Goel and Mitra (2000) studied the method and approaches to the conservation of Phytodiversity.

Study Area

ISSN: 2456-5474

Sahwa and Taranagar are the north eastern part of Churu district and situated in 28⁰41'N Latitude and 75°3'E longitude with a height of about 286 meters above mean sea level (MSL). Plant collected from these different sites of Sahwa and Taranagar (Bhaleri Site I, Changoi Site II, Sahwa Site III). The study area represents extremely harsh climatic condition and varied micro-topographic features where plants have adapted to arid hostile climatic conditions. It gives rise to various plant associations which exhibit stark seasonality. The vegetation is mainly dry, open and interspersed grasslands consisting mainly of stunted, thorny and prickly shrubs and perennial herbs which are mostly drought resistant. The ephemerals come during the rainy season, complete their life cycle before the advent of summer and bulk of area is once more transformed into open sandy plains, desolate and barren. Vegetation is mainly categorized on the basis of its habitat (Shetty and Singh, 1987). The physiographic feature of this area having sand dunes and sandy plains both stabilized and embryonic sand dunes are present in this region.

Material and Method

The field study was carried out in Sahwa and Taranagar Tehsil of Churu District, Rajasthan during 3 years (2008-2010). The selected areas represent various topographical and ecological features such as sandy plains, sand dunes and humid area near IGNP Canal distributary and Chaudhary Kumbha Ram Arva Lift canal (Sahwa). Plant species were collected and studied by rapid and frequently used quadrat method (Braan-Blanquet, 1932), Herbarium sheet also prepare and labeled. Further identified with different floras (Maheswari, 1963, Bhandari, 1990) and also matching with the help of authentic herbarium of

Dungar College Bikaner, J.N.V.University Jodhpur and B.S.I. Jodhpur.

The various phytosociological parameters such as Frequency, Density, Abundance and Dominance for each species were analysed from collected data as per standard methods. These parameters are Frequency, Density & abundance.

Frequency

It is concerned with the degree of dispersion of individuals of a species within an area. measured by percentage presence of a species in a particular area.

Innovation The Research Concept

Density

ISSN: 2456-5474

It denotes the average number of individuals of a given species in an area. The study of density is significant due to relative importance of each species. Abundance

It is the number of individuals per unit area of their occurrence or it represents the relative distribution of species in the community were calculated.

A number of indices have been reported which are used to measure both components of species diversity, i.e. species richness and evenness into a single index. Indices such as Simpson's index (Simpson, 1949) and Shannon-wiener (Shannon and Weaver, 1949) for species diversity, for Equitabilities (Lloyd and Ghelardi, 1964) has been used for assessing biodiversity of the area. Simpson's index

Simpson proposed for the first time a widely index varies inversely with species heterogeneity and infact measures the concentration of dominance. The index measures the probability that two individuals selected at random from a sample will belong to the same species and ranges from 0-1. Shannon-Wiener index

This index of diversity is based on information theory. The information content is a measure of the amount of uncertainty. The index is zero if there is only one species in the sample and maximum when all species are represented by the same number of individuals. It generally falls between 1.5 -3.5 and rarely exceeds 4.5 (Margalef, 1972). Pielou (1966) suggested that this index is valid on random samples which one takes out from a large community with known species number.

Equitability

Evenness or Equitability represents the distribution of individuals among the species. It is sometimes defined as the ratio of observed diversity (Margalef, 1958).

Result and Discussion

The present study focuses on an inventory of phytodiversity of Sahwa and Taranagar area of Churu District, Rajasthan and recorded 188 plant species, belonging to 142 genera covering 53 families of Angiosperms (Table1), out of these reported 188 plant species, 13.3% are trees, 10.1% Shrubs, 05.3% Undershrubs, 57.5% herbs, 10.6% grasses and 03.2% climbers (Figure-1). It is also evident that Fabaceae and Poaceae are the largest families Dicotyledons and Monocotyledons respectively. Fabaceae the largest family is represented by 18 genera and 26 plant species whereas Poaceae by 17 genera and 23 species. Rests of the families are represented by less than 10 plant species. Among these, 27 families are represented by only single genus and 21 families by only single species (Figure-2).

The recorded data of frequency, density and abundance of each species is estimated and are presented that the plant species which exhibits highest frequency during 2008-2010 such as Cenchrus ciliaris at Site I and lowest frequency is Blepharis sindica at Site III. The plant species which

shows high density during both the years Amaranthus viridis at Site II and lowest density is citrullus colosynthis at Site III and the plant species which shows highest abundance such as Tragus racemosus and Cypreus rotundus at Site II and the lowest is Convolvulus microphyllus at Site I. The value of different parameters such as diversity indices Shannon Wiener Index), (Simpson's Index, Equitabilities or Evenness of study site are presented in table 2.

Table 2: Diversity Indices of Study Sites

	Site I	Site II	Site III
Simpson Index	0.052	0.057	0.070
Shannon &Wiener Index	3.107	2.961	2.681
Equitability	0.866	0.873	0.743

The value of Simpson index ranges from 0.052 to 0.070, which shows that the distribution of individuals among the species is in evenness. According to Margalef (1972) the value of Shannon -Wiener index generally falls from 1.5 to 3.5 and rarely exceed up to 4.5. In the present study, this index was also observed higher and ranges from 2.681 to 3.107. Higher value indicates that all species represented by the same number of individuals. The value of equitability is from 0.743 to 0.886 observed at study sites.

Verma et al. (2003) observed and reported that the dominance index was lower while density index was higher for ground flora. In the present study higher value of species diversity but lesser value of equitability were reported. The higher value of species diversity is not a good indicator of the relative wealth of species in a community.

According to Sen (1982) the western Indian desert is divided into five major phytogeographical divisions. The study area is also divided into following divisions:

Sand Dunes Areas

It is biggest division and vegetationally demarcated by Calligonum type. Among tree and shrub species Prosopis cineraria and Calligonum polygonoides are dominant throughout, whereas Acacia senegal, Calotropis procera, decidua, Dalbergia sisso, Leptadenia pyrotechnica, Salvadora persica, Tecomella undulata are codominant.

Sandy Plains

This area is vegetationally demarcated by Prosopis-Ziziphus-Capparis type. The dominant shrubs and trees are Capparis decidua, Leptadenia pyrotechnica, Prosopis cineraria, **Z**iziphus nummularia, while Acacia senegal, Calotropis procera, Lycium barbarum, Salvadora oleoides, S. persica etc are the co-dominant ones. Cenchrus prieurii, Cleome gynandra, Gisekia pharnacioides, Rhynchosia minima, Tecomella undulata, Tephrosia purpuria, Tribulus rajasthanensis, Ziziphus are threatened plant species of this division (Pandey etal 1983: Bhandari 1990)

Gravel and Compact Soil Areas

This division is vegetationally named as Capparis-Prosopis-Salvadora **Dominant** type.

Vol-3* Issue-2*March- 2018

Innovation The Research Concept

vegetation among shrubs and trees are Capparis decidua, Prosopis cineraria, Salvadora oleoides and Ziziphus nummularia whereas co-dominant are Accacia nilotica, Acacia senegal, Albizia lebbeck, Azadirachta indica, Balanitis aegyptica, Calotropis procera, Leptadenia pyrotechnica, Salvadora persica etc. Some of the threatened taxa found in this habitat Cenchrus prieurii, Heliotropium marifolium, Tribulus raiasthanensis.

Saline Areas

ISSN: 2456-5474

Vegetationally this division named as Tamarix-Salvadora-Suaeda type. The dominant species are Chenopodium album, Capparis decidua, Haloxylon recurvum, Salvadora persica, Suaeda fruticosa, Tamarix indica whereas co-dominant are Acacia senegal, Calotropis procera, Indigofera oblongifolia, Leptadenia pyrotechnica, Prosopis cineraria etc.

The study area has a large number of perennial species such as Aerva persica, Calligonum polygonoides, Capparis decidua, Crotalaria burhia, Leptadenia pyrotechnica, Prosopis cineraria, Salvadora persica, Solanum surattense, Tecomella undulata, Withania somnifera, these plant are also used as emergency food and have lots of economic value.

Several plant species such as Aerva persica, Argemon maxicana, Calotropis procera, C. gigantea, Capparis decidua, Crotalaria burhia, Leptadenia pyrotechnica, Prosopis cineraria, Salvadora oleoides, S.persica and Tecomella undulata are adapted and best suited for conservation and stabilization of sand dunes and also maintain the phytodiversity of study area as well as balancing the desert ecosystem. The rich phytodiversity of study area has a great potential of plants having medicinal value and some are used as fodder in addition to this, these plants provide tannins, oils, gums and resins, dyes and fibers.

The documentation and proper assessment of phytodiversity is dependent on respective areas and their habitat. High demand rate of plant products for various purposes promote either overexploitation or cultivation of specific plant species (Tiwari P., Soni I. and Patel S. (2014).) and thus economic valuation ecosystem services neglects the value of biodiversity conservation. Unfortunately, present ecosystem are destroyed rapidly due to habitat alternation, high grazing pressure, over exploitation, pollution and introduction of exotic species also threatened the native taxa and global biological resources and this had led to the fast depletion of biodiversity in different ecosystems and adversely affected the ecological balance and socio-economic status of the people. There is a need for increased legal protection well designed management practices to conserve the phytodiversity.

Table 1: List of indigenus plant species observed at study area and its surroundings

S.No.				Remarks
	Plant species	Family	Habitat	
01	Abutilon indicum (Linn.) Sweet	Malvaceae	Shrub	Kanghi, WP
02	Acacia fernesiana (Linn.)Willd.	Fabaceae	Herb	Fodder
03	A. nilotica (Linn.) Del.	Fabaceae	Tree	Gum
04	A. senegal (Linn.) Willd.	Fabaceae	Small tree	Kumbat, Gum
05	Achyranthes aspera Linn.	Amaranthaceae	Herb	Uandokanto
06	Aegle marmelos (Linn.) Correa.	Rutaceae	Tree	Bilpatar, Fruit
07	Aerva persica (Burm.f.) Merrill	Amaranthaceae	Under shrub	Bui
08	A. pseudotomentosa Blatt. & Hallb.	Amaranthaceae	Under shrub	Buari
09	Albizia lebbeck (Linn.) Willd.	Fabaceae	Tree	Sares, WP
10	Aloe barbadensis Mill.	Liliaceae	Herb	Gwarpatha
11	A.vera (Linn.)Burm	Liliaceae	Herb	Gwarpatha, LP
12	Alternanthera sessilis (Linn.) DC.	Amaranthaceae	Herb	Fodder
13	Amaranthus spinosus Linn.	Amaranthaceae	Herb	Kantio-chandelo
14	A. viridis Linn.	Amaranthaceae	Herb	Common weed
15	Anagallis arvensis Linn.	Primulaceae	Herb	Whole plant
16	Argemone mexicana Linn.	Papaveraceae	Herb	Satyanasi, WP
17	Aristida adscensionis Linn.	Poaceae	Grass	Lampro
18	A. ciliaris	Poaceae	Grass	Fodder
19	Arnebia hispidissima (Lehm.) DC.	Boraginaceae	Herb	Ram-bui, Alkanet
20	Artemisia scoparia Waldst& Kit.	Asteraceae	Herb	Fodder
21	Asparagus racemosus Willd.	Liliaceae	Climber	Satawari, Tuber
22	Asphodelus tenuifolius Cav.	Liliaceae	Herb	Piazi
23	Azadirachta indica A.Juss.	Meliaceae	Tree	Neem
24	Balanites aegyptiaca (Linn.) Delile.	Simaroubaceae	Tree	Hingotia, WP
25	Bergia ammannioides Roxb.	Elatinaceae	Herb	Jal bhangro
26	Blepharis sindica T.Anders.	Acanthaceae	Herb	Untkantalo, Leaf
27	Boerhavia diffusa Linn.	Nyctaginaceae	Prostrate herb	Saata
28	Borreria articularis (Linn. f.) Willd.	Rubiaceae	Herb	Agio
29	Brachiaria erusiformis (Sm.) Griseb.	Poaceae	Herb	Murat
30	Butea monosperma (Lamk.) Taub.	Fabaceae	Shrub	Khakario

			oradon ino i	toocaron concep
31	Calligonum polygonoides Linn.	Polygonaceae	Shrub	Phog
32	Calotropis gigantea (Linn.) R.Br.	Asclepiadaceae	Shrub	Moto Aak
33	C. procera (Ait.) R.Br.	Asclepiadaceae	Shrub	Aakara
34	Capparis decidua (Forsk.) Edgew.	Capparaceae	Small tree	Kair
35	Carissa congesta Wight	Apocynaceae	Shrub	Weed
36	Cassia angustifolia Vahl.	Fabaceae	Shrub	Fuel, Fodder
37	C. auriculata Linn.	Fabaceae	Shrub	Anwal
38	Catharanthus roseus Linn.	Apocynaceae	Herb	Baramasi
39	Cenchrus biflorus Roxb.	Poaceae	Grass	Bhuroot
40	C. ciliaris Linn.	Poaceae	Grass	Dhaman
41	C. setigerus Vahl, Enum,	Poaceae	Grass	Weed
42	Chenopodium album Linn.	Chenopodiaceae	Herb	Chilaro
43	C. murale Linn.	Chenopodiaceae	Herb	Goyalo
44	Circium wallichii DC.	Asteraceae	Herb	Weed
45	Cistanche tubulosa (Schrenk.) Hook.f.	Orobanchaceae	Parasite,Herb	Parasite
46	Citrullus colocynthis (Linn.) Schard.	Cucurbitaceae	Prostrate herb	Tumbo
47	C. lanatus (Thunb.) Matsumara & Nakai	Cucurbitaceae	Prostrate herb	Matiro
48	C. vulgaris Schrad.	Cucurbitaceae	Prostrate herb	Fruit
49	Cleome gynandra Linn.	Capparaceae	Herb	Safed bagro
50	C. viscosa Linn.	Capparaceae	Herb	Handi bagro
51	Clerodendrum phlomidis Linn. f.	Verbenaceae	Small tree	Arni, root
52	Cocculus hirsutus (Linn.) Diels.	Menispermaceae	Climber	Weed,Fodder
53	Convolvulus auricomus (A.Rich.) Bhandari	Convolvulaceae	Prostrate herb	Rota bel
54	C. microphyllus Choisy	Convolvulaceae	Herb	Santari
55	Corchorus depressus (Linn.) Christensen	Tiliaceae	Prostrate herb	Kurand
56	C. tridens Linn.	Tiliaceae	Herb	Kagnasha
57	Coronopus didymus (Linn.) Smith	Brassicaceae	Prostrate herb	Weed
58	Crotalaria burhia BuchHam.	Fabaceae	Under shrub	Shinio
59	C. juncea Linn.	Fabaceae	Under shrub	Strong branches
60	C. medicaginea Lamk.	Fabaceae	Herb	Gugario
61	Ctenolepis cerasiformis (Stocks) Naud.	Cucurbitaceae	Climber	Ankh phutani
62	Cucumis melo Linn.	Cucurbitaceae	Prostrate herb	Kachari
63	C. sativus Linn.	Cucurbitaceae	Herb	Fruits
64	Cynodon dactylon (Linn.) Pers.	Poaceae	Grass	Doobghas
65	Cyperus iria Linn.	Cypereceae	Herb	Moth, Aromatic
66	C. rotundus Linn.	Cypereceae	Herb	Motho
67	Dactyloctenium aegyptium (Linn.) P.Beauv.	Poaceae	Grass	Makaro
68	Dalbergia sissoo Roxb.	Fabaceae	Tree	Sisham
69	Datura metel Linn.	Solanaceae	Herb	Kalo-Daturo
70	D. stramonium Linn.	Solanaceae	Herb	Dhaturo
71	Desmostachya bipinnata (Linn.) Stapf	Poaceae	Herb	Dhab
72	Digera alternifolia Linn.	Amaranthaceae	Herb	Lolaru
73	Digitaria adescendens H.B.& K.	Poaceae	Grass	Jharanio
74	Echinochloa colonum Linn.	Poaceae	Grass	Jirio
75	Echinops echinatus Roxb.	Asteraceae	Shrub	Root,Seed
76 	Eclipta alba (Linn.) Hassk	Asteraceae	Herb	Bhangara
<u>77</u>	Eleusine compressa (Forsk.) Aschers.	Poaceae	Grass	Fodder
78	Emex spinosa (Linn) Campd.	Polygonaceae	Herb	Khanto-pelak
79	Eragrostis ciliaris (Linn.) R.Br.	Poaceae	Grass	Lutia lamp
80	E. pilosa (Linn.) P.Beauv.	Poaceae	Grass	Sporadic grass
81	E. tenella (Linn.) P.Beauv.	Poaceae	Grass	Eat Fresh & dry
82	E. tremula Hochst.	Poaceae	Grass	Chirio-ro khet
83	Erigeron bonariensis Linn.	Asteraceae	Herb	Weed

				i tooodi oii ooiloop
84	Eruca sativa (Mill.) Thell.	Brassicaceae	Herb	Tarmiro
85	Eucalyptus lanceolatus	Myrtaceae	Tree	Safado
86	Euphorbia dracunculoides Lamk.	Euphorbiaceae	Herb	Bamburi
87	E. granulata Forsk.	Euphorbiaceae	Herb	Dudheli
88	E. hirta Linn.	Euphorbiaceae	Herb	Dudhi
89	Fagonia indica Burm.f.	Zygophyllaceae	Herb	Dhanso
90	Farsetia hamiltonii Royle	Brassicaceae	Herb	Hiran chabbo
91	Ficus bengalensis Linn.	Moraceae	Tree	Bar
92	F. religiosa Linn.	Moraceae	Tree	Pipal
93	Gisekia pharnacioides Linn.	Molluginaceae	Herb	Morang
94	Glinus lotoides Linn.	Molluginaceae	Herb	Bakadu, Hata
95	Gnaphalium indicum Linn.	Asteraceae	Herb Under shrub	Khersiya
96	Haloxylon recurvum (Moq.) Bunge ex Boiss.	Chenopodiaceae		Khar
97	Hedyotis corymbosa (Linn.) Lamk.	Rubiaceae	Herb	Rare weed
98	Heliotropium ellipticum Ledebour	Boraginaceae	Herb	Pili-bui
99	H. marifolium Koen.ex Retz.	Boraginaceae	Herb	Choti-santari
100	Heliotropium subulatum Hochst.ex DC.	Boraginaceae	Herb	Kali-bui
101	Ifloga spicata (Fors) Schultz-Bip.	Asteraceae	Herb	Weed, Fodder
102	Indigofera cordifolia Heyne ex Roth	Fabaceae	Herb	Bekario
103	I. sessiliflora DC. Prodr	Fabaceae	Herb	Fodder
104	Jatropha curcas Linn.	Euphorbiaceae	Shrub	Jamal ghota
105	J. gossypifolia Linn.	Euphorbiaceae	Shrub	Biodiesel
106	Lathyrus aphaca Linn.	Fabaceae	Herb	Pilimatari
107	Launaea procumbens	Asteraceae	Herb	Jangali gobhi
108	(Roxb.)Ramayya&Rajgopal Lawsonia intermis Linn.	Lythraceae	Shrub	Mehandi
100	1	-	01 1	171.
109	Leptadenia pyrotechnica (Forsk.) Decne.	Asclepiadaceae	Shrub	Khimp
110	Leucas aspera (Willd.) Spreng.	Lamiaceae	Herb	Weed
111	Lycium barbarum Linn. Majorana hortensis Moench	Solanaceae	Herb	Morali
112 113	Maytenus emarginata (Willd.) Ding Hou	Lamiaceae	Herb Small tree	Marwa Kankero
114		Celastraceae Fabaceae	Herb	
115	Medicago sativa Linn. Melilotus indica (Linn.) All.	Fabaceae	Herb	Rijaco Marvo
116	Mimosa hamata Willd.	Fabaceae	Shrub	Jinjanio
117	Mollugo cerviana (Linn.) Ser.	Molluginaceae	Herb	Chiri dhaniyo
118	M. nudicaulis Lamk.	Molluginaceae	Herb	Rangatio-khar
119	Momordica charantia Linn.	Cucurbitaceae	Climber	Barkarelo
120	Moringa oleifera Lamk.	Moringaceae	Tree	Sahjana
121	Ocimum basilicum Linn.	Lamiaceae	Under shrub	Tulsi
122	O. sanctum Linn.	Lamiaceae	Under shrub	Tulsi
123	Oldenlandia aspera DC.	Rubiaceae	Herb	Weed
124	Oligochaeta ramosa (Roxb.) Wagenitz	Asteraceae	Herb	Fruit
125	Opuntia elatior Mill.	Cactaceae	Shrub	Thor
126	Oxalis corniculata Linn.	Oxalidaceae	Herb	Khatari
127	Panicum turgidum Forsk.	Poaceae	Herb	Muratio
128	Parkinsonia aculeata Linn.	Fabaceae	Small tree	Weed
129	Parthenium hysterophorus Linn.	Asteraceae	Herb	Weed
130	Pedalium murex Linn.	Pedaliaceae	Herb	Gokhru
131	Peristrophe paniculata (Forsk.) Burm.f.	Acanthaceae	Herb	Kagner
132	Phalaris minor Retz	Poaceae	Grass	Weed
133	Phragmites karka (Retz) Trin. ex Stend.	Poaceae	Grass	Marshy place
134	Phyla nodiflora (Linn.) Greene	Verbenaceae	Creeping	Moist place
135	Phyllanthus amarus Schum. & Thonn.	Euphorbiaceae	herb Herb	Gugario
136	P. nirui Hook. f.	Euphorbiaceae	Herb	Fodder
137	Physalis minima Linn.	Solanaceae	Herb	Chirphoti
	1	l .	1	1

		•••		. tooodaron oonloop
138	Polycarpaea corymbosa (Linn.) Lamk.	Caryophyllaceae	Herb	Zuthiokhad
139	Polygala arvensis Roxb	Polygalaceae	Herb	Weed
140	P. chinensis Willd	Polygalaceae	Herb	Fodder
141	P. linifolia	Polygalaceae	Herb	Weed
142	Polypogon monspeliensis (Linn.)Desf.	Poaceae	Herb	Batalio Gehun
143	Portulaca oleracea Linn.	Portulacaceae	Herb	Luni
144	Prosopis cineraria (Linn.) Druce	Fabaceae	Tree	Khejari
145	P. juliflora (Swartz.) DC.	Fabaceae	Small tree	Leaves fodder
146	Pulicaria crispa (Cass.) Benth.&Hook.f.	Asteraceae	Herb	Soneli
147	Ranunculus scleratus Linn.	Ranunculaceae	Herb	Weed
148	Rhynchosia minima (Linn.) DC.	Fabaceae	Climber	Chiri-motio
149	Ricinus communis Linn.	Euphorbiaceae	Small tree	Arand, Fruit
150	Rumex dentatus Linn.	Polygonaceae	Herb	Jangali palak
151	Saccharum bengalense Retz.	Poaceae	Perennial grass	Moist place
152	Salvadora oleoides Decne	Salvadoraceae	Tree	Kharo-jhal
153	S. persica Linn	Salvadoraceae	Tree	Pilu, Mitha jal
154	Scripus spp.	Cyperaceae	Perennial grass	Common on moist
155	Sesamum indicum Linn.	Pedaliaceae	Herb	Til
156	S. mulayanum Nair	Pedaliaceae	Herb	Weed
157	Sisymbrium irio Linn.	Brassicaceae	Herb	Asalio
158	Solanum indicum Linn.	Solanaceae	Under shrub	Whole plant
159	S. nigrum Linn.	Solanaceae	Herb	Makoi
160	S. surattense Burm.f.	Solanaceae	Herb	Ringani
161	Sonchus brachyotus DC.	Asteraceae	Herb	Weed
162	S. oleraceus Linn.	Asteraceae	Herb	Akadiyo
163	Spergula arvensis (Linn.)	Caryophyllaceae	Herb	Zutanio-Khad
164	Striga euphrasioides Benth.	Scrophulariaceae	Semiparasite herb	Moist place
165	Suaeda fruticosa (Linn.) Forsk.	Chenopodiaceae	Shrub	Lunaki
166	Tamarindus indica Linn.	Fabaceae	Tree	Imli, Fruit pulp
167	Tamarix dioica Roxb.	Tamaricaceae	Tree	Timber
168	Tecomella undulata (Sm.) Seem.	Bignoniaceae	Tree	Rohiro
169	Tephrosia purpurea (Linn.) Pers.	Fabaceae	Herb	Bansa
170	Tinospora cordifolia (Willd.) Miers.	Menispermaceae	Climber	Neem giloy
171	Tragus racemosus Hook. f.	Poaceae	Grass	Fodder
172	Trianthema portulacastrum Linn.	Aizoaceae	Herb	Dhedo-santo
173	T. triquetra Rottle.ex Willd.	Aizoaceae	Herb	Lunki
174	Tribulus terrestris Linn.	Zygophyllaceae	Prostrate herb	Bhankhri
175	Tridax procumbens Linn.	Asteraceae	Herb	Weed
176	Trigonella foenum-graecum Linn.	Fabaceae	Herb	Methi

177	T. incisa (Benth.) Ali	Fabaceae	Herb	Common weed
178	Typha angustata Bory &Chaub.	Typhaceae	Perennial herb	Paan
179	Verbesina encelioides (Cav.) Benth. & Hook.	Asteraceae	Herb	Weed
180	Vernonia cinerascens Schultz-Bip.	Asteraceae	Shrub	Fodder
181	Vetiveria zizanioides (Linn.)Nash	Poaceae	Perennial grass	Khas, essential oil
182	Vigna aconitifolia (Jacq.) Marechal	Fabaceae	Shrub	Seeds
183	Withania somnifera (Linn.) Dunal	Solanaceae	Under shrub	Asgandh
184	Xanthium strumarium Linn.	Asteraceae	Under shrub	Gadario, fruit
185	Zaleya redimita (Melville) Bhandari	Aizoaceae	Herb	Ratio gulalio santo
186	Ziziphus mauritiana Lamk.	Rhamnaceae	Small tree	Bordi
187	Z. nummularia (Burm.f.) Wt.	Rhamnaceae	Shrub	Borti
188	Z. sativa Gaertn	Rhamnaceae	Tree	Fodder

Figure 2: Distribution of observed plant species in study area

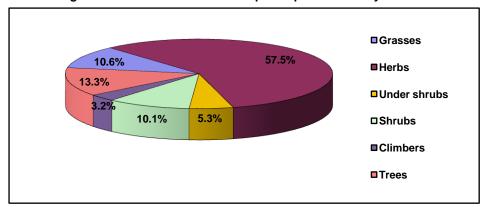


Figure 3; Dominant plant families of study area

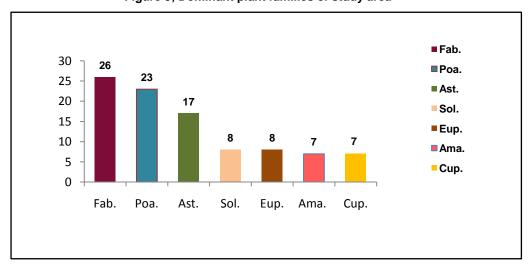
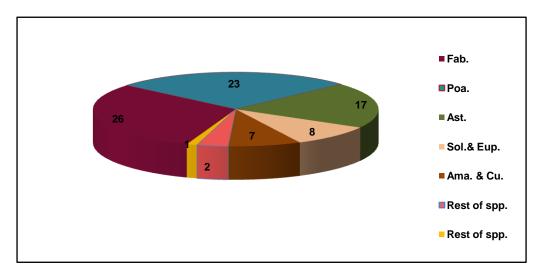



Figure 4: Family wise distribution of observed plant species in study are

A-Fabaceae, B-Poaceae, C-Asteraceae, D-Solanaceae & Euphorbiaceae,

E-Amarathaceae & Cucurbitaceae, F-27 families (2-4 species), G-21 Families (single species)

Plants are useful to the social communities and also play an important role in the maintenance of natural ecosystem Corlett R.T. (2016). It is understanding fundamental importance for biodiversity and ecosystem functionings, as it provides us with the data to explore and discribe phytodiversity through scientific analysis. The study provides the basic information about the plant species as well as plant community which are currently found in the study area. Such a list could play an important role for the local and regional authorities interested in future to conserve and sustainable use of phytodiversity for sustainable development of the area. The study will provide a hand list on plant species and habitat diversity in churu district. Thus the present study could play crucial role for future conservation of natural resources otherwise will have to face the consequencies of disappearance of such valuable xeric bio wealth.

References

- Allen, G.L. Mr. and Mrs. 1852: Views and flowers from Gujarat and London:1-5.
- Apte, G. S., Bahulikar, R. A., Kulkarni, R. S., Lagu, M. D., Kulkarni, B. G., Suresh, H. S., Rao, P. S. N. and Gupta, V. S. 2006: Genetic diversity analysis in Gaultheria fragrantissima Wall. (Ericaceae) from the two biodiversity hot spots in India using ISSR markers. Curr. Sci. 91: 1634-
- 3. Anon.1997: National Action Plan on Biodiversity. Ministry of Environmental and Forests, Govt. of India, New Delhi p.32, 33, 36.
- 4. Bhandari, M. M. 1978: Phytogeography of the Indian desert. In: Tropical Botany, (eds.) K. Larsen and L. B. Holm-Nielsen, pp. 143-152.
- 5. Bhandari, M. M. 1990: Flora of the Indian desert, (IInd ed.) MPS Repros, Jodhpur, India
- Braun Blanquet, J.1932: Plant sociology: the study of plant communities (Transl. by G.D. Fuller and H.S. Conard). Transl. of 1st ed. of Pflanzensoziologic (1928), McGraw, Hill. New York and London, 439 p.

- Corlett R.T. (2016). Plant diversity in a changing world:status, trends, and conservation needs. Plant Divers., 38(1),10-16.
- Gena, C. B. 2006: Phytodiversity of the Thar desert, National Conference on Biodiversity Conservation, 21-22 September 2006, M.L.V. Govt. College, Bhilwara.
- Goel, A. and Mitra, R.2000: Methods and approaches to the conservation of plant and diversity in India, Applied-Botany-Abstracts. 20.
- 10. Harsh, G.R. 2002: Bio diversity and ecology of Kodamdesar pond area of Bikaner district. Ph.D.Thesis. M.D.S. University, Ajmer (India).
- 11. Heywood, V.H. & Baste, I. 1995: Introduction in: Global Biodiversity Assessment (eds) V.H. Heywood and R.T. Watson, Cambridge University Press, Cambridge, UK.
- 12. Hooker, J.D. 1907: Imperial Gazetterer of India. Oxford. 1: 1-247.
- 13. Lloyd, M. and Ghelardi, R.J., 1964: A table for calculating the "equitability" component of species diversity, J. Anim. Ecol. 33: 217-225.
- 14. Maheshwari, J.K. 1963: The Flora of Delhi: CSIR, New Delhi.
- 15. Margalef, D.R. 1958: Information theory in ecology. Year book of the Society for General systems Research, 3: 36-71.
- 16. Margalef, D.R. 1972: Homage to Evelyn Hutchinson, or why is there an upper limit to diversity. Trans. Connect. Acad. Arts, Sci. 44: 211-235.
- 17. Mishra, R. 1968: Ecology Work Book. IBH Publishing Company, Oxford, New Delhi.
- 18. Mohammed, S., Kasera, P.K. and Sen, D.N. 2002: Biology and Adaptive strategies of inland Halophytes, Advances in Resource Management of the Indian Desert. Edites by B.B.S. Kapoor, Ahmed Ali, S.K. Mathur and Satish Kaushik. Published by Madhu Publications, Bikaner. 215-228.
- 19. Pandey, R.P., Shetty, B.V. and Malhotra, S.K. 1983: A preliminary census of rare and

- Innovation The Research Concept
- threatened plants of Rajasthan, In: An Assessment of Threatened Plants of India (Eds, S.K. Jain and R.R. Rao), pp. 52-62. BSI, Howrah.
- Norse, E.A. and Mac Manus, R.E., 1980: Ecology and living resources biological diversity, In: Environmental Quality 1980. The Eleventh Annual Rreport of Council of Environmental Quality 31 – 80 CEQ ashington, DC. USA.
- 21. Sarup, S. 1958b: A list of some common plants of Jaisalmer and its neighbourhood, Jaipur (mimeo.) pp, 1-15.
- Semwal, D.P., Pradha Saradhi, P., Nautiyal, B.P. and Bhatt, A. P. 2007: Current status, distribution and conservation of rare and endangered medicinal plants of Kedarnath wildlife sanctuary. Central Himalayan, India. Curr. Sci. 92: 1733-1738.
- 23. Sen, D.N. 1982: Environment and Plant Life in Indian Desert, Geobios International, Jodhpur, India, pp. 249.
- Sen, D.N.1996: Biodiversity and conservation of vegetation in Indian desert In: Environment and Biodiversity: In the context of South Asia, (eds). P.K.Jha, G.P.S. Ghimire, S.B, Karmacharya, S.R.Baral and P. Lacoul, ECOS, Kathmandu, Nepal, pp. 34-41.
- Sen, D.N., 2000: Weeds in rain fed cropping in Indian desert. In: Environment and Agriculture, At the Cross road of the New Millennium, (eds) P.K.Jha, S.B, Karmacharya, S.R. Baral and P.

- Lacoul, ECOS, Kathmandu, Nepal, pp. 223-228 Mohammed, S., 2000: Biodiversity and ecological adaptation in arid zone plants, In National Conference on Degradation of environment – Causes, Consequences and Solutions, (eds) B.L. Yadav and R.R. Jain. Bhilwara, Abst. P.8.
- 26. Shannon, C.E. and Weaver, W. 1949: The Mathematical Theory of Communication. University of Illinois Press. Urbana. 1L USA.
- 27. Shetty, B.V. and Singh, V., 1987: Flora of Rajasthan, Vols. I-III: BSI, Calcutta, India.
- 28. Singh, B.P., Kalra, P. and Romana, H.S. 1997: An analysis of the Flora of Churu (North Rajasthan). J. Econ. Taxon. Bot. 2(3): 697-701.
- 29. Singh, E. and Singh, M.P. 2010. Biodiversity and phytosociological analysis of plants around the Municipal Drain in Jounpur. Int. Jour. Bio. Lif Sci. 6(2):77-82.
- 30. Tiwari P., Soni I. and Patel S. (2014). Study of vegetation in Pt. Ravishankar Shukla University campus, Raipur Chhattisgarh with special reference to Statistics Department. Ind. J. Sci. Res., 4(1), 121-126.
- Verma, R. K., Kapoor, K. S., Subramani, S. P. and Veenit, J. 2003: Assessment of plant species diversity in Betula utilis D., in cold arid region of Himachal Pradesh. Environ. and Ecol. 21: 922-927.